
Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

tio Is estimated to average 1 hour per response Including the time for reviewing Instructions, searching
he data needed, and completing and reviewing the coct ion of information. Send Comments regarding
"llection of Information, including suggestions for reducing this burden, to Washington Headquarters
nd Reortsa,1216 Jefverson s Highway, uite 1204, Arlington, VA 22202-4302, and to the Office ol

o~ecttO7 4-O1 88), Washington, DC 20503.
REPOR 3. REPORT TYPE AND DATES COVERED- First Annual Report

5. FUNDING NUMBERS

An Evolutionary Approach to Designing Neural Networks (c) AFOSR Contract No.
F 49620-89-K-0005

6. AUTHOR(S)

Stephen Barnard, Senior Computer Scientist
Aviv Bergman, Research Physicist AFOSRT ?- C1 4 069

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
SRI Internatinal REPORT NUMBER

Artificial Intelligence Center
333 Ravenswood Avenue SRI Project ECU 7929
Menlo Park, CA 94025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
USAF, AFSC
Air Force Office of Scientific Research
Bldg. 410A;t
Boiling AFB, D.C. 20332-6448

11. SUPPLEMENTARY NOTES T

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution unlimited Unclassified/unlimited

A 13. ABSTRACT (Maximum 200 words)
..... -1 One of the most interesting properties of neural networks is their ability to
learn appropriate behavior by being trained on examples. Established learning
algorithms, which typically work by minimizing error through backpropagation in
weight space, tend to get stuck in local optima--a tendency typical of gradient-
descent methods applied to nonconvex objective functions. Therefore, for problems
of nontrivial complexity these systems must be handcrafted to a significant degree,
but the distributed nature of neural network representations make this handcrafting
difficult. We are investigating an evolutionary approach to learning that will
avoid this problem. This approach simulates a variable population of netowrks
which, through processes of mutation, combination, selection, and differential
reproduction, converges to a group of netowrks well suited to solving the task at
hand. The important components of the approach are a genetic language for coding
a large variety of networks, a procedure for constructing networks from these
genetic codes, a nondeterministic process for mutating and combining genetic codes,
and a function that measures the overall fitness of networks in the conflxftof the
task athan. we use a Connection Machine to exploit the inherent parallelism n
these simulations,. ,_,_

14. SUBJECT TERMS . - 15. NUMBER OF PAGES
24

Population Dynamics, Evolution and Coevolution, Unsupervised 16. PRICE CODE
learning, Adaptation, Neural Networks, Genetic Algorithm.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS F-AGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified ul

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sta 239.18
2l8- 102

First Annual Report - September 1990

AN EVOLUTIONARY APPROACH TO
DESIGNING NEURAL NETWORKS

Stephen T. Barnard, Senior Computer Scientist
Aviv Bergman, Research Physicist
Artificial Intelligence Center

SRI Project 7929

Prepared for:

Air Force Office of Scientific Research
Boiling Air Force Base
Washington, D.C. 20332

Attn: Dr. Alan E. Craig, Building 410

Contract F49620-89-K0005

3 l3 I 9 I 39 6 0

Contents

1 Introduction and Objectives 2

2 Status of the Research 3

2.1 Introduction ... 3

2.2 Encoder Populations 4

2.3 A Genetic Algorithm 7

2.4 Results .. 9

2.4.1 Experiment 1: Typical behavior (no mutation) 11

2.4.2 Experiment 2: Changing Environment 12

2.4.3 Experiment 3: Effects of Noise 13

2.4.4 Experiment 4: Large n 14

2.4.5 Experiment 5: Specialization 14

2.5 Summary of Accomplishments 16

3 Publications and Presentations Aocession For 17

NTIS GRA&I
DYIC TAD

4 Personnel Qsm¢ 19

Jast If lest i

Dstrtbutlof/.

Avsilability Codes
Avat l end/or @

Diet | pools1.

1 Introduction and Objectives

Research on an evolutionary approach to designing neural networks that learn was begun at

SRI International (SRI) in July 1989 under AFOSR sponsorship (SRI Project 7929, Contract

No. F49620-89-K0005). This report describes the research conducted during the first year of

the project.

The aim of this program is to design a system that can learn to recog:ze signals adap-

tively. That is, the system should learn to respond in a distinctive, repeatable way to those

signals to which it has been exposed, should track changes to its signal environment (includ-

ing possibly the introduction of entirely new classes of signals), and should do these things

spontaneously, with no instruction. Adaptative signal recognition should be the result of

a self-reorganization of the system in the face of a changing environment. Our hypothesis

is that the principles of biological evolution and population genetics provide the basis for

such behavior. The processes of variation, selection, and differential reproduction are known

to produce in natural populations the kind of emergent behavior we seek to emulate. By

simulating these processes on the computer, we hope to observe similar kinds of behavior in

artificial systems.

Clearly, this approach requires powerful computing resources. We must simulate statis-

tically significant populations of networks on many inputs over many generations. While

such an approach may be impractical on conventional serial computer systems, it has a high

degree of implicit parallelism that can be exploited with suitable hardware. Not only can

we simulate all members of the population in parallel, but the classes of phenotypes that we

study have an internal parallelism that we can exploit. The feedforward perceptrons with

hidden units, for example, have a parallel dataflow structure. SRI's Connection Machine

provides a nearly ideal computational engine for our work.

2

Our purpose is not to model biological processes explicitly, but rather to explore a genetic

and ecological metaphor of computation. We are interested in investigating this metaphor

for two reasons. First of all, adaptive behavior may lead to very general methods of dealing

with difficult and ill-defined problems in signal understanding. A system that can learn from

experience without explicit training by examples, that can exploit contextual information,

and that can modify itself to adapt to possibly radical changes in its input could be useful for

difficult problems such as speaker-independent speech recognition. In addition, the inherent

parallelism of the evolutionary metaphor, with its emphasis on populations, can lead to

effective methods for exploiting the power of parallel computer systems.

2 Status of the Research

2.1 Introduction

The problem we are addressing is a simplified version of the class of problems we will tackle

eventually. We describe the general problem, and then describe the simplified version we

have investigated this year.

Suppose that we have a system, for the time being regarded as a "black box," that receives

as input a signal vector of length n, x = (z0,... z,n-). These signals could be, for example,

speech waveforms. The components of x are real numbers within some limited dynamic

range. In practice, since any measurement of a real signal will be uncertain to some degree,

we can represent the signal vector with nonnegative integers to some precision b bits. Each

possible signal is a point in the n-dimensional metric signal space.

Now suppose the system is stimulated only by a much smaller, structured ensemble of

signals generated by a few unknown, relatively low-dimensional physical processes, possibly

corrupted by noise. They are called sources. They could be, for example, a few speakers of

3

English. There may be considerable variation within a single source, so we should imagine

a source to be represented by a subset of the signal space: its attractor. The task of the

system is to respond distinctively to each source. From looking at a macroscopic feature of

the system, we should be able to tell when it has been presented with a source and which

source it is.

In the simplified problem we restrict the components of the input vector to binary values

(b = 1) and restrict the sources to single values (point attractors). Under these assumptions,

the system will be learning a subset of the numbers {0,..., 2n - 1}. The signal vector can

be visualized as the corners of an n-dimensional hypercube, and the response of the system

will be to select one of these corners.

2.2 Encoder Populations

Each subsystem is an instantiation of a simple neural network called an encoder [1,11] as

shown in Figure 1. An n1-n 2-n3 encoder has n1 inputs that feed into n2 hidden units, which

in turn feed into n3 output units. Each unit computes a weighted sum of the inputs and

compares the result with a threshold. If the sum exceeds the threshold, the unit is activated

and outputs a one; otherwise, it produces a zero.

Originally, these networks were used to attack the encoding problem [11]. Assume that

ni = n3 and n2 = log 2 ni, and that the inputs consist of a single one bit, with all the rest

zeros. The position of this bit then represents one of the first n natural numbers. The

encoding problem is to learn to encode these numbers into a pattern of log n bits, and also

to learn to decode this logn bits pattern into an output pattern, usually identical to the

input pattern. We, however, are using the population of encoders in quite a different way.

Instead of finding a single network that solves the encoding problem for all sources, we want

to construct subpopulations of networks that are specialized for encoding different sources.

4

co 0 1 Cc 2 c3

hidden-unit gene output-unit geneU.,'

a0 a1 a 2 a3

Figure 1: A 4-2-4 encoder.

In general, an encoder is a tuple

f= [0, -, u, VI

where 3 = (1o,.. - and -y = (-yo,... - are thresholds for the hidden units and

the output units, respectively, and U = {u~jiO < i < n2 ,0 < j < nl} and V = fvijjO < i <

n 2 , 0 < j < n3} are weight matrices.

An encoder accepts an nh-bit input vector a, produces an n2 -bit hidden vector b, and

then produces an n3-bit output vector c. Each unit applies a threshold function

I lif S> 0

0 otherwise

to the sum of its weighted inputs:

bi = O(Oi, E uljaj)

0<j<nl

5

cj=(j, vijbj)
O<i<n 3

It is essential to the genetic algorithm described below that a description of an encoder

may be decomposed into parts, called genes, in such a way that a new encoder (a child can

be constructed with parts from two others (the parents) [7,5]. In part, we have chosen the

encoder network for this work because it can be decomposed in a fairly natural way. The

genetic structure of an encoder is illustrated in Figure 1. Each encoder has n2 hidden-unit

genes and n3 output-unit genes. The hidden-unit genes are the more complex of the two

types. The ith hidden-unit gene of an encoder consists of the hidden-unit threshold 3i, a

vector of input weights (ujj10 < j < ni), and a vector of hidden-unit weights (vijO < j < n3).

The jth output-unit gene consists simply of the output-unit threshold yj.

The system consists of a population of N encoders

-" = fC,0 < k < N}

with, in general, different thresholds and weights. We always have ni = n3 and typically, but

not necessarily, n2 = log 2 ni. Every encoder in the population is presented simultaneously

with the same input vector, and tries to reconstruct the input. Success is measured by a

fitness function [3,8]

fk(a)- j ai -eil.

Note that fitness is simply the negative of the Hamming distance between the input and

the output vectors. The idea behind the genetic algorithm described below is to increase

the frequency of genes and combinations of genes in E by selection, thereby causing the

population to learn to encode the inputs it sees most frequently.

6

2.3 A Genetic Algorithm

Genetic algorithms can be effective for exploring large design spaces [5,7]. The essential idea

is to simulate many generations of populations of individual subsystems, with each generation

produced from previous generations by selection and differential reproduction [3,4,6,10]. Each

individual is graded by a fitness function that is intended to measure its performance on one

or more instances of a problem. Those individuals that are most fit are selected and then

a set of new subsystems is created by applying genetic operators to the descriptions of the

selected individuals. Commonly used genetic operators are called crossover and mutation,

modeled after similar processes that drive biological evolution [2,5,7]. Although the concepts

behind genetic algorithms are very general, there are inevitably a wide variety of parameters,

reproduction schemes, representations, and so on that could be used. Part of the aim of this

preliminary work is to understand the consequences of and interactions among these choices.

Our genetic algorithm consists of an initialization,

- *_-0

followed by an iteration of the generation operator, G:

=. _ (-,a t), t = 0,1,...

In the initialization step, a population of at least N = 40961 encoders with n inputs and

m hidden units is created. All thresholds and weights are chosen from a uniform random

distribution ovex the interval [-1. 1). Initially, all of the members of'- are marked as alive and

are assigned an age chosen from a random distribution of integers in the range [0,..., agemax -

1]. Only those encoders marked as alive, denoted by P, are active and available for input,

'We use a Connection Machine with 4096 processors for our simulations. N can be larger than 4096, but

must be a power of 2.

7

selection, and reproduction. All encoders that are not alive are treated as available space

for the next generation. The age of is an integer indicating the number of generations for

which f has been continuously alive.

The generation function G is defined as the following sequence of steps:

S- select(f, E, a)

Q - reproduce(Q)

- 4- insert(Q*,,)

age(')

kill(')

These steps can be performed in several ways, but each step has the basic characteristics

outlined below, in Section 2.4.

Selection: S1 *-- select(f,-,a)

An input bit vector, a, is chosen and presented to the system. The input can be selected in a

variety of ways. The simplest is to select the vector from a set of sources according to some

prior probability distribution. Input vectors can be degraded with noise by inverting bits

with some probability. Inputs can also be chosen randomly from the set of 2n possible inputs

with some specified frequency. All living encoders are ranked by fitness and a subset Q of

the most fit is selected. The size of 0 could be determined dynamically by & tLhrshold on

fitness. Instead, in this preliminary investigation, we set the size of f? as a fixed proportion

of the size of - (usually 1/16).

Reproduction: W +- reproduce(Q)

Every member of f? is paired at random with another member of S_ (possibly itself), which

is called its mate. The pairs are combined to produce a fixed number of children. The

combination is performed by applying two genetic operators, crossover and mutation. In

the crossover operation, every child's gene is selected from one or the other parent with

8

probability 1/2, a process called free recombination [6,9]. In the mutation operation, every

gene constituent, whether a weight or a threshold, is replaced by a random value with some

probability of mutation p, which is usually quite low.

Insertion: , *-- insert(Q'*,E)

A random number k E {0,..., N - 1} is generated for every child in Q. If k is not alive, the

child is inserted into S at that location, is marked as alive, and is assigned an age of zero. If

more than one child tries to occupy the same location, one child is chosen at random.

Aging: - +- age(')

The ages of all living encoders are increased by 1.

Death: H +- kill(B)

Every encoder whose age is greater than agemax is marked as not alive. Its space in ' then

becomes available for the children in the next generation.

2.4 Results

When interpreting the performance of the system, we consider only those encoders that can

reconstruct their outputs perfectly. These are said to respond to the input; that is, rk(a) = 1,

where

rk(a) = max(O, I + fk(a)) .

We want many networks to respond to the sources, few or none to respond to nonsource

signals, and different subpopulations to respond to each different source.

Two measures of the effectiveness of the system depend on computing the probability

distribution P(alr), which is the probability that the signal is a given that a randomly

chosen encoder is responding. This distribution is computed assuming no prior knowledge of

the frequency of occurrence of the source. Therefore, using a uniform (maximum entropy)

9

distribution of priors

P(a) =

and writing the probability of an encoder responding to a as

P(rIa) -Ek rk(a)
N

and the probability of an encoder responding to any signal as

P(r) = Ex Ek rk(x)N2n

we use Bayes's Rule to determine the desired distribution:

P(alr) =P(rfa)P(a)
P(r)

or

P(alr) - N ELk rk(a)
Ex Ek rk(x)

Ideally, this distribution should be identical to the prior probability P(a) after many gener-

ations.

We can compute the entropy of P(alr)

S = - P(xlr) log 2 P(xlr)

x

to summarize the degree of organization of the system in terms of the uncertainty associated

with its response. We can also compute the correlation between P(alr) and some prior model

distribution PM(a) from which the sources were chosen:

C = x(P(xlr) - P(xlr))(PM(x) - PM(X))

The first three experiments described below use entropy and correlation to examine the

evolution of the system under different conditions. Because the time required to compute

10

4 20000
S

210000

0 10000 1000(a) n c 2 generations (b) n generations

Figure 2: Typical behavior (no mutation)

P(alr) grows exponentially with the length of the input vector, n, these experiments were

done only on small 4-2-4 encoders. The fourth experiment examines the behavior of the

system when n is larger and, in particular, when the number of possible inputs greatly exceed

the size of the population. Finally, the fifth experiment examines whether the population

becomes specialized to the sources.

2.4.1 Experiment 1: Typical Behavior (no mutation)

The first experiment examines the typical behavior of a population of 16K 4-2-4 encoders

with no mutation (p = 0). The inputs were chosen at random with equal frequency from a

set of four sources. Figure 2 shows the entropy of P(alr) over 1000 generations when the

maximum number of children n, is 2 and 4 ((a) and (b), respectively). Also shown is the size

of the population that is living.

In both cases the entropy eventually drops to the ideal value of log2 4 = 2, which is the

entropy of the model distribution. The correlation with the model distribution (not shown)

is very nearly 1 after only about 20 generation. The fraction of the population that is living

fluctuates at first, but eventually approaches some limit, which is greater for the nc = 4 case.

11

L I L2 - L, L2 L1L241 o
S________ -0

0 500 1000 1500 2000 2500 3000
generations

(a) ' 0

4S C
S 0

2 /' IL -1

0 500 1000 1500 2000 2500 3000

(b) 0.1 generations

Figure 3: Changing environment

2.4.2 Experiment 2: Changing Environment

The previous simple experiment illustrated that adaptation can occur without mutation,

relying only on the crossover operation. This experiment shows that mutation is essential

in a more challenging problem. Figure 3 shows the entropy and the correlation measures

when the system is successively stimulated with two different sets of four signals, L1 and L2.

Two cases are shown: p - 0 and p = 0.01. The interesting feature of this experiment is

that in the first case, u = 0, the system "collapses" into an irreversible condition of total

insensitivity on the third presentation of the set L1. The entropy drops to zero, indicating

that the system can respond to no signals (or possibly to only one), and the correlation with

the model distribution drops effectively to zero. Apparently, the successive presentations

and epochs of selection have eliminated variation in E. Selection for L1 eliminates genes

effective for L2, selection for L2 eliminates genes effective for L1 , and so on, until by the third

presentation of L1 , '- has been so depleted that it cannot adapt.

12

s Pn Pn .2 P,, p, .25P

0 1000 0 1000 0 1000 0 1000
generations

C
0-

0 1000 0 1000 0 1000 0 1000
generations

Figure 4: Effects of noise

In the case of/z = 0.01 this does not happen. Even this low rate of mutation is sufficient

to maintain adequate variation in SE. The crossover operation is effective for making large

jumps though the space of genotypes, while mutation is effective as a continual source of

variation.

2.4.3 Experiment 3: Effects of Noise

Experiment 3 examines the effects of noise in the input. The population size is 4K, the

encoders are 4-2-4, four different sources are used with equal probability, j = 0.01, n, = 4,

and agemn, = 30. Each encoder is presented with an input vector, selected from the four

sources, but each vector has a probability P of having (at least) one bit changed at random.

All encoders receive input from the same source, but the inputs are corrupted by noise

independently, so that any two encoders may see different signals. Figure 4 shows four cases:

13

P. = 0.1,0.2,0.25,0.4. Entropy is shown above and correlation below. The shaded portions

of the correlation graphs indicate when the system is working, in the sense that the four

signals of highest probability are identical to the sources. The system performs well up to

P= = 0.2 but degrades quickly for higher noise levels.

2.4.4 Experiment 4: Large n

To test the system on a larger problem, and in particular on a problem in which the number of

possible signals greatly exceeds the size of E, we performed a simulation with 16-4-16 encoders

and eight sources. As in the previous simulation the population size is 4K, P = 0.01, n, = 4,

and age,a_ = 30. Because the number of possible inputs is 216 = 64K it is not practical to

compute the complete distribution P(alr), especially not for every generation. Instead, we let

the system run for 4,000 generations and then counted the number of encoders that responded

averaged over all eight sources, which was 488.5, and the average number of encoders that

responded averaged over 1000 randomly chosen signals, which was 0.13.

2.4.5 Experiment 5: Specialization

The last experiment examines whether the population divides into disjoint subpopulations

specialized for the sources. Suppose we have s sources with Ri being the subpopulation of

encoders that respond to source i. The following equation gives a normalized measure of the

overlap between two subpopulations:

Oi Ri n3 RjJ O _ i~J < .
=~ U Ril

Ideally, Oii should be one if i = j and zero otherwize for complete specialization. Figure 5

shows matrices of overlap measures for four cases. When we adapt 4-2-4 encoders to only

two sources, shown in Figure 5 (a), no specialization occurs at all: nearly every encoder

14

2 sources overlap matrix (for 4-2-4 encoders) 4 sources overlap matrix (for 4-2-4 encoders)

SI S2 SI S2 S3 S4

SI 1.0 0.99 SI 1.0 0.99 0.99 0.0

S2 0.99 1.0 S2 0.99 1.0 0.99 0.0

(a) S3 0.99 0.99 1.0 0.0

S4 0.0 0 .0 0.0 1.0

(b

7 sources overlap matrix (for 4-2-4 encoders) 10 sources overlap matrix (for 16-2-16 encoders)

SI S2 S3 S4 S5 S6 S7 S S2 S3 S4 S5 S6 S7 S8 S9 SIC

S1 1.0 0.22 0.62 0.53 0.0 0.0 0.0 SI 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

$2 0.22 1.0 0.43 0.33 0.0 0.0 0.0 S2 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S3 0.62 0.43 1.0 0.69 0.0 0.0 0.0 S3 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

S4 0.53 0.33 0.69 1.0 0.0 0.0 0.0 S4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

S5 0.0 0.0 0.0 0.0 1.0 0.99 0.99 S5 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

S6 0.0 0.0 0.0 0.0 0.99 1.0 0.99 S6 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

S7 0.0 0.0 0.0 0.0 0.99 0.9 1.0 S7 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

(C) S8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

S9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

S10 0.0 0.0 0.0 0.66 0.0 0.0 0,0 0.0 0.0 1.0

(dl)

Figure 5: Specialization

15

that responds to one source also responds to the other. When we adapt the same system

to four sources (b) or seven sources (c), there is some specialization, with relatively more

specialization occurring when there are more sources. Finally, when we adapt a system of

16-2-16 encoders to ten sources, Figure 5 (d), the specialization is nearly perfect, with only

two subpopulations having a significant degree of overlap.

2.5 Summary of Accomplishments

For the encoding problem, the evolutionary algorithm exhibits effective adaptation. Diffo - 1

ential reproduction amplifies the frequency of selected genes and leads to the emergence of a

population that is progressively more fit. In our model, free recombination (crossover) seems

to be the primary means of adaptation. Two relatively fit parents clearly have a better-than-

average chance of producing more fit offspring. Mutation, on the other hand, has only an

average chance of producing an offspring that is more fit, regardless of the parents' fitness.

However, by itself free recombination causes a progressive loss of information: those genes

that are amplified replace others that are lost forever. This loss of diversity in the gene

pool is disastrous if the ensemble of sources changes, as demonstrated in Experiment 2. The

mutation operator continuously injects diversity into the gene pool, thereby preventing the

system from becoming trapped in a low-diversity dead end.

Our approach differs from some genetic-algorithm and neural-network approaches in a

fundamental way. We do not seek an individual encoder that is "most fit" overall; instead,

we seek subpopulations of networks that have specialized their responses to particular sources.

The response of the system is an aggregate, macroscopic feature of the individual responses

of a large population of individual, interacting subsystems. We view fitness as a very general

concept: simply a measure of the similarity between the input and the output. Rather than

being built in to the fitness function, the evolutionary trend toward specialization is instead

16

an emergent property of the population as a whole, and a consequence to the informational

bottleneck in the encoders. Unlike the more standard optimization methods for designing

systems, this method results in subpopulations that resemble species adapted to different

ecological niches that are determined by the sources.

We would like to simulate populations with more diverse features, such as variable sizes,

reproduction rates, age limits, and mutation rates. Currently, these properties are global

to all encoders, but they could be variable, inherited properties, represented as "modifier

genes" attached to the basic encoder genotype. We speculate that this process will lead to

more interesting adaptation because it will create more niches for adaptation to fill. For

example, one can imagine relatively large, scarce, long-lived encoders specializing on complex

sources that appear infrequently or change slowly or relatively small, numerous, short-lived,

and perhaps highly mutable encoders specializing on common, simple sources. A further

interesting possibility is the coevolution of interacting populations in symbiotic or parasitic

relationships [10].

We are changing the input representation of the more general case of b-bit samples so

that we can investigate applications to real, physical sources. Whether the approach can be

extended to more complex sources than point attractors is an open question. To do so, the

basic encoder representation may have to be extended to a more elaborate, dynamic network.

Instead of an encoder, we may need a generator whose internal state allows it to recognize

and mimic (i.e., predict) a sours with a low number of dimensions.

3 Publications and Presentations

A paper by Stephen T. Barnard and Aviv Bergman will be published in the Proceedings of

Parallel Problem Solving from Nature, a workshop held in Germany, on October 1990. Aviv

17

Bergman also participated in the international workshop on Evolution and Complex System,

in Torino, Italy, on July 1990. This workshop included fruitful discussion among several of

the world's top researchers into complex systems and evolution.

18

4Personnel1

19

AVIV BERGMAN

Research Physicist
Artificial Intelligence Center
Computing and Engineering Sciences Division

SPECIALIZED PROFESSIONAL COMPETENCE
Address block location using high resolution multispectral images, including

development of image processing. signature detection, classification and ranking
algorithms

Statistical image and range data analysis, image-processing and pattern recognition
using classical techniques, simulated annealing and neural-networks methods

Bar code detectio' and decoding algorithms
2-D and 3-D image processing and understanding for arc-welding robots. Digital filters,

heuristics and geometrical analysis of stereo and laser scanner data. and development
of the corresponding range sensors

The application of massively parallel machines (Connection Machine) and algorithms
(neural-networks like) for optimization problems, namely. stereo vision (including
occlusions boundaries), and image segmentation

Simulated Evolution, and the acquisition of learning and computation capabilities in
massively parallel architecture using population genetics theory

REPRESENTATIVE RESEARCH AT SRI (since 1985)
Analysis of images of mail pieces
Supervised and unsupervised classification technique
Classification using neural networks
Bar code detection and decoding algorithms
Noise-tolerant range image analysis for autonomous navigation
Robot manipulation grasping estimation

OTHER PROFESSIONAL EXPERIENCE
Spline functions and predictions of 1-D and 2-D signals
Medical applications of signal processing
Image Processing, Department Manager, Elco Robotics
Population genetics and evolutionary theory

ACADEMIC BACKGROUND
PhD. studies at. St anford Universiiy, Biological Science Department. 1988 -
Department of Physics, Weizmai Institute, 1975-1976
Department of Physics and Electrical Engineering. the Technion, ltaifa, Israel,

1972-1975

PUBLICATIONS
"An Optical Height Measuring System for Operation in a Noisy Environment," Israeli

Patent No. 719.18
Authored or coauthored nunierus papers and reports on evolution theory.

neural-networks, image analysis. and robotics

PROFESSIONAL ASSOCIATIONS AND HONORS
IEEE., AAAI., AAAS., INNS., BBS.

STEPHEN T. BARNARD

Senior Computer Scientist
Artificial Intelligence Center
Computing and Engineering Sciences Division

SPECIALIZED PROFESSIONAL COMPETENCE
Artificial intelligence, machine vision, parallel computing

REPRESENTATIVE RESEARCH AT SRI (since 1979)
Interpretation of perspective images of natural scenes, shape from contour mnder

perspective, application of machine vision techniques to industrial problems.
perceptionl for mobile robots, theory and modeling of stereo vision, neural-nletwork
models for vision, implementat ions on the Connection M\achine superconpliter

OTHER PROFESSIONAL EXPERIENCE
Induistrial lectureship), Computer Science Dept., Stanford U., CA

ACADEMIC BACKGROUND
B3.S.. Mlechanical Engineering, Case W-\esternl Reserve U7. (1969); MIS., Conmputer

Science. 1,. of Minnlesota (19716); Ph.D., Computer Science, U. of Mlinniesota (197-9)

PARTIAL LIST OF PUBLICATIONS
"SohatcStereo Mlatchin- onl the Connection Mlachine." P7rou'dhly Of //1(Fo-0111

litl~i-atisnnlCoj~ei-nceoi Supci-con?/nhting, Santa Clara.C il*y19)

"St ocliast mc Stereo M atching over Scale," Jntei-national Journal of (iomnptcl V ision. vol.
3(1). 19,qf

"Sterco V"Ision.- Encyclopedia of Atificial Intelligencf. John Wiley anid Sons (1987)
(with M.Fiseller)

-A Stochastic Approach to Stereo Vision." Pitoceedings of the AA.41-86. Philadelphia
(A 'ig mst. 1986)

"Choosing a liaskc for Perceptual Space," Coiptei, I.ision. Guiophics.. and Imagey
Process-iny. vol. 29, (1983)

"Interpreting Perspective Images," Artificial Intelli e ce. vol. 21, (1983)
"Computationtal Slereo." ACMI Computing Surveys, (December 198S2) (with M1. Fischler)
"INodeling anid tUsing Physical Constraints in Scene Analysis," Pi-ocecding.s of Ili

A.4.4-82. Pittsburgh (August 1982) (with A. Pentland)
'"Lower-Level Estimmation and Interpretation of Visual Motion,"~ C'omputcr. (August

1981) (with W. Thmompson)
IDisparity% Amtalvsis of Irnages." IEEE Trainsactions on Pattern A naly.0is nnd Atiachmlc

Iiiteliyewme. Vol. PAMI-2 (July 1980) (with W. Thompson)
Author, "Trhe lImatge Correspondence Problem." U. of Mlinnesota 1li.D. thesis

(November 19719)

PROFESSIONAL ASSOCIATIONS
MNeimber. Anmericain Association for the Advancement of Science
M emiber. Ainerican Association for Artificial iitelligence

References

[1] Ackley, D. H., G. E. Hinton, and T. J. Sejnowski, "A learning machine for Boltzman

Machines," Cognitive Science, 9, 147-169, 1985.

[2] Bergman, A., and M.W. Feldman, "More on selection for and against recombination,"

Journal for Theoretical Population Biology, 1990.

[3] Bergman, A., and M. Kerszberg, "Breeding intelligent automata," IEEE First Annual

Conference on Neural Networks, San Diego, June 1987.

[4] Ewens, W.J., Mathematical Population Genetics, Springer-Verlag, 1979.

[5] Goldberg, David E., Genetic Algorithms, Addison-Wesley, 1989.

[6] Hartl, D.L., and A.G. Clark, Principles of Population Genetics, (2nd edition), Sinauer

Associates, Inc. Publishers, 1989.

[7] Holland, J.H., Adaptation in Natural and Artificial Systems, Ann Arbor : University of

Michigan Press, 1975.

[8] Kerszberg, M., and A. Bergman, "The evolution of data processing abilities in competing

automata," in Computer Simulation in Brain Science, ed. Rodney M.J.Cotterill, pp. 249-

259, Cambridge, U.K.: Cambridge University Press, 1988.

[9] Packard, N., "Evolving bugs in a simulated ecosystem," in Artificial Life, ed. Christopher

G. Langton, Addison Wesley Publishing Company, 1989.

[10] Roughgarden, J., Theory of Population Genetics and Evolutionary Ecology: An Intro-

duction, Macmillan Publication Co., Inc., 1979.

[11] Rumelhart, D. E., G. E. Hinton, and R. J. Williams, "Learning internal representations

by error propagation," in Parallel Distributed Processing, vol. 1, ed. D. E. Rumelhart

and J. L. McClelland, Cambridge, Massachusetts: The MIT Press 1986.

[12] Bateson, P.P.G. "Gene, evolution, and learning," in The Biology of Learning, eds. P.

Marler and H.S. Terrace, pp. 75-88: Dahlem Konferenzen 1984, Springer-Verlag, 1984.

[13] Changeux, J.P., T. Heidmann, and P. Patte "Learning by selection," in The Biology

of Learning, eds. P. Marler and H.S. Terrace, pp. 115-133: Dahlem Konferenzen 1984,

Springer-Verlag 1984.

[14] Gold, J.L. and P. Marler"Ethology and the natural history of learning," in The Biology

of Learning, eds. P. Marler and H.S. Terrace, pp. 47-74: Dahlem Konferenzen 1984,

Springer-Verlag 1984.

[15] Maxwell, T., C. Lee Giles, and Y. C. Lee, "Generalization in neural networks: The conti-

guity problem," Proceedings of the IEEE International Conference on Neural Networks,

San Diego, CA, June 1987.

[16] Edelman, G.M. "Group selection and phasic reentrant :ignaling: A theory of higher brain

function," in The Mindful Brain (with V. B. Mountcastle), Cambridge, Massachusetts:

M.I.T. Press, 1987.

[17] Reeke, G.N, and G.M. Edelman, "Selective Networks and Recognition Automata," An-

nals of the New York Academy of Science, Vol. 429, 181-201, 1984.

